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Abstract
Potential equivalence transformations (PETs) are effectively applied to a class
of nonlinear diffusion–convection equations. For this class, all possible
potential symmetries are classified and a theorem on their connection with
point symmetries via PETs is also proved. It is shown that the known nonlocal
transformations between equations under consideration are nothing but PETs.
The action of PETs on sets of exact solutions of a fast diffusion equation is
investigated.

PACS number: 02.30.Jr

1. Introduction

In this paper, we consider a class of nonlinear diffusion–convection equations of the form

ut = (d(u)ux)x + k(u)ux (1)

that have a number of applications in mathematical physics (see for instance [2, 3, 18, 25]).
Equation 1 is also called Richard’s equation [29, 36].

Here, d = d(u) and k = k(u) are arbitrary smooth functions of u, d(u) �= 0. The linear
case of (1) (d, k = const) was studied by Lie [20] in his classification of linear second-order
PDEs with two independent variables. (See also a modern treatment of this subject in [23].)

Various classes of quasi-linear evolutionary equations in two independent variables that
intersect class (1) were investigated by means of symmetry methods in [4, 9, 11, 19, 22, 24,
33, 36, 37]. The complete and strong group classification of (1) as well as a review of previous
results on this subject were presented in [27].

To study nonlocal symmetries of PDEs in the framework of the local approach, Bluman
et al [7, 8] proposed the notion of potential symmetries. A system of PDEs may admit
symmetries of this kind when some of the equations can be written in a conserved form.
After introducing potentials for PDEs written in the conserved form as additional dependent
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variables, we obtain a new (potential) system of PDEs. Any local invariance transformation
of the obtained system induces a symmetry of the initial system. If transformations of some
of the ‘non-potential’ variables explicitly depend on potentials, this symmetry is a nonlocal
(potential) symmetry of the initial system. More details about potential symmetries and their
applications can be found in [5, 7, 8]. Potential symmetries of (1) and its generalizations were
studied by Sophocleous [30–32]. Other approaches for investigation of nonlocal symmetries
of (1) were used in [1, 28]. Lisle [21] obtained a number of results concerning equivalence
transformations of (1) and (4) and group classification in these classes. Unfortunately, these
results, including the notion of potential equivalence transformations (PETs), were little known
until now and were rediscovered by other scientists.

In this paper, we study in detail connections between symmetries and equivalence
transformations of equations (1), corresponding potential systems and equations for the
potential. For class (1), we prove a theorem on connection of the potential symmetries
with local ones via PETs. It is shown that all the known nonlocal transformations between
equations from the class under consideration are, in fact, PETs. In particular, they include the
well-known transformations linearizing the u−2-diffusion (named also Fujita–Storm) equation
[6, 34], Fokas–Yortsos [12, 35] and Burgers equations [10, 13, 17] as well as the less known
transformation of ‘logarithmic nonlinearity’ to ‘power nonlinearity’. For some equations
PETs are nonlocal symmetries. In such cases they generate additional equivalences on the
corresponding sets of solutions and can be used, e.g., to construct new exact solutions from
known ones.

Our paper is organized as follows. In section 2, known results on classical group analysis
of diffusion–convection equations are adduced in a form which is suitable for purposes of
our investigations. After formulating the statement of problem on classification of potential
symmetries rigorously, we completely classify symmetries of such kind for the equations under
consideration in section 3. Analysis of connections between potential and Lie symmetries of
equations from class (1), which is given in section 4, is essentially based on the accuracy of
the above classification results. The main theorem on reducibility of potential symmetries to
point symmetries with potential and additional point equivalence transformations is proved
for class (1). Section 5 is devoted to the demonstration of using PETs as nonlocal invariance
transformations. As an example, the fast diffusion equation ut = (ln u)xx is considered in
such framework.

2. Group classification of diffusion–convection equations

The exhaustive result on classical group classification of class (1) is presented by the statements
adduced below [27].

Using the direct method, we construct the complete equivalence group including both
continuous and discrete point transformations.

Theorem 1. Any transformation from the equivalence group G∼ has the form

t̃ = ε4t + ε1, x̃ = ε5x + ε7t + ε2, ũ = ε6u + ε3,

d̃ = ε−1
4 ε2

5d, k̃ = ε−1
4 ε5k − ε7,

where ε1, . . . , ε7 are arbitrary constants, ε4ε5ε6 �= 0.

Corollary 1. If the equations from class (1) are rewritten in the explicit conserved form

ut = (d(u)ux − K(u))x (2)
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Table 1. Results of group classification for class (1).

N d(u) k(u) Basis of Amax

0 ∀ ∀ ∂t , ∂x

1 ∀ 0 ∂t , ∂x, 2t∂t + x∂x

2 eµu eu ∂t , ∂x, (µ − 2)t∂t + (µ − 1)x∂x + ∂u

3 eu u ∂t , ∂x, t∂t + (x − t)∂x + ∂u

4 eu 0 ∂t , ∂x, 2t∂t + x∂x, t∂t − ∂u

5 uµ uν ∂t , ∂x, (µ − 2ν)t∂t + (µ − ν)x∂x + u∂u

6 uµ ln u ∂t , ∂x, µt∂t + (µx − t)∂x + u∂u

7a uµ 0 ∂t , ∂x, 2t∂t + x∂x, µt∂t − u∂u

7b u−2 u−2 ∂t , ∂x, 2t∂t + u∂u, e−x(∂x + u∂u)

8 u−4/3 0 ∂t , ∂x, 2t∂t + x∂x, 4t∂t + 3u∂u, x
2∂x − 3xu∂u

9 1 u ∂t , ∂x, t∂x − ∂u, 2t∂t + x∂x − u∂u, t
2∂t + tx∂x − (tu + x)∂u

10 1 0 ∂t , ∂x, 2t∂t + x∂x, 2t∂x − xu∂u, 4t2∂t + 4tx∂x − (x2 + t)u∂u, u∂u, h∂u

where Ku = −k, then the corresponding equivalence group Ĝ∼ consists of the transformations

t̃ = ε4t + ε1, x̃ = ε5x + ε7t + ε2, ũ = ε6u + ε3,

d̃ = ε−1
4 ε2

5d, K̃ = ε−1
4 ε5ε6K + ε7u + ε8,

where ε1, . . . , ε8 are arbitrary constants, ε4ε5ε6 �= 0.

Theorem 2. The Lie algebra of the kernel of principal groups of 1 is Aker = 〈∂t , ∂x〉. A
complete set of G∼-inequivalent equations (1) with the maximal Lie invariance algebra Amax

not equal to Aker is exhausted by cases given in table 1.

Note 1. In table 1, µ, ν = const. (µ, ν) �= (−2,−2), (0, 1) and ν �= 0 for Case 1.5. µ �=
−4/3, 0 for Case 1.7a. The function h = h(t, x) is an arbitrary solution of the linear heat
equation (ht = hxx). Case 1.7b can be reduced to 1.7a (µ = −2) by means of the additional
equivalence transformation

t̃ = t, x̃ = ex, ũ = e−xu. (3)

Note 2. Hereafter for convenience we use double numeration T .N of classification cases,
where T denotes the number of the table and N denotes the number of the respective case in
table T. The notion ‘equation 1.N ’ (‘system 2 .N ’) is used for the equation of form (1) (the
system of form (4)) where the parameter functions take values from the corresponding case.

Note 3. The exponential Cases 1.2–1.4 can be regarded as limits of the power Cases 1.5–1.7a.
More exactly,

ũ = 1 + ν−1u,µ = µ′ν: 1.5µ,ν → 1.2µ′ , ν → +∞,

ũ = 1 + µ−1u, t̃ = µ2t, x̃ = µx: 1.6µ → 1.3, µ → +∞,

ũ = 1 + µ−1u: 1.7aµ → 1.4, µ → +∞.

The above limits are extended to the structure of the Lie invariance algebras and can be used to
obtain exact solutions for the exponential cases from those for the power cases. Some partial
cases of the above limits for diffusion equations (k = 0) were adduced in [7, 8].
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3. Classification of potential symmetries

After rewriting equation (1) in the conserved form ut = (dux − K)x where K ′ = −k and
introducing the new (potential) unknown function v = v(t, x), we obtain the equivalent system
of PDEs (called the potential one)

vx = u, vt = dux − K. (4)

It follows from system (4) that the function v satisfies the equation

vt = d(vx)vxx − K(vx) (5)

that is called the potential equation corresponding to equation (1). System (4) can be regarded
as a Lie–Bäcklund transformation between equations (1) and (5).

Lisle proved in [21] that the Lie algebra of the equivalence group G∼
pot for the class of

systems (4) is

A∼
pot = 〈∂t , ∂x, ∂u + x∂v, ∂v, t∂t − d∂d − K∂K, x∂x + v∂v + 2d∂d + K∂K,

u∂u + v∂v + K∂K, t∂x + u∂K, t∂v − ∂K, v∂x − u2∂u + 2ud∂d − uK∂K〉.
He also constructed the connected component of unity in G∼

pot and attached some discrete
equivalence transformations to it. We prove using the direct method that the transformation
group obtained in such way coincides with the whole equivalence group G∼

pot.

Theorem 3. Any transformation from G∼
pot has the form

t̃ = ε1t + ε2, x̃ = ε′
1x + ε′

2v + ε′
3t + ε′

4,

ṽ = ε′′
1x + ε′′

2v + ε′′
3 t + ε′′

4 , ũ = ε′′
1 + ε′′

2u

ε′
1 + ε′

2u
,

d̃ = (ε′
1 + ε′

2u)2

ε1
d, K̃ = ε′

1ε
′′
2 − ε′

2ε
′′
1

ε′
1 + ε′

2u

K

ε1

− ε′′
3

ε1
+

ε′
3

ε1

ε′′
1 + ε′′

2u

ε′
1 + ε′

2u
,

where ε1, ε2, ε
′
i , ε

′′
i (i = 1, 4) are arbitrary constants, ε1(ε

′
1ε

′′
2 − ε′

2ε
′′
1) �= 0.

Definition 1. We call the transformations from G∼
pot potential equivalence transformations

(PETs) for class 1 (or 2).

Theorem 4. The set G∼
triv. pot of potential equivalence transformations which act on the

arbitrary elements d and K trivially modulo Ĝ∼ is a normal subgroup of G∼
pot. The

corresponding factor group can be identified with the group formed by the transformations

t̃ = t, x̃ = x + εv, ũ = u

1 + εu
,

ṽ = v, d̃ = (1 + εu)2d, K̃ = K

1 + εu
,

(6)

where ε is an arbitrary real, and the hodograph transformation of variables x and v

t̃ = t, x̃ = v, ũ = u−1,

ṽ = x, d̃ = u2d, K̃ = −u−1K.
(7)
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Table 2. Results of group classification for systems (4) with respect to G∼
triv. pot-equivalence.

N d(u) K(u) Basis of Amax

0∗ ∀ ∀ ∂t , ∂x, ∂v

1∗ ∀ 0 ∂t , ∂x, ∂v, 2t∂t + x∂x + v∂v

2∗ eµu eu ∂t , ∂x, ∂v, (µ − 2)t∂t + (µ − 1)x∂x + ∂u + ((µ − 1)v + x)∂v

3∗ eu u2 ∂t , ∂x, ∂v, t∂t + (x + 2t)∂x + ∂u + (x + v)∂v

4∗ eu 0 ∂t , ∂x, ∂v, 2t∂t + x∂x + v∂v, t∂t − ∂u − x∂v

5∗ uµ uν+1 ∂t , ∂x, ∂v, (µ − 2ν)t∂t + (µ − ν)x∂x + u∂u + (µ − ν + 1)v∂v

6∗ uµ ln u ∂t , ∂x, ∂v, (µ + 2)t∂t + (µ + 1)x∂x + u∂u + ((µ + 2)v − t)∂v

7∗ uµ u ln u ∂t , ∂x, ∂v, µt∂t + (µx + t)∂x + u∂u + (µ + 1)v∂v

8∗ uµ 0 ∂t , ∂x, ∂v, 2t∂t + x∂x + v∂v, µt∂t − u∂u − v∂v

1 u−2 eµ/u u e1/u ∂t , ∂x , ∂v, (µ − 2)t∂t + ((µ − 1)x + v)∂x − u2∂u + (µ − 1)v∂v

2 u−2 e1/u u−1 ∂t , ∂x, ∂v, t∂t + (x + v)∂x − u2∂u + (v − 2t)∂v

3 u−2e1/u 0 ∂t , ∂x, ∂v, 2t∂t + x∂x + v∂v, t∂t − v∂x + u2∂u

4 uµ

(u+1)µ+2
uν+1

(u+1)ν
∂t , ∂x , ∂v, (µ − 2ν)t∂t + ((µ − ν)x − v)∂x + u(u + 1)∂u + (µ − ν + 1)v∂v

5 uµ

(u+1)µ+2 u ln u
u+1 ∂t , ∂x, ∂v, µt∂t + (µx + v − t)∂x + u(u + 1)∂u + (µ + 1)v∂v

6 uµ

(u+1)µ+2 0 ∂t , ∂x, ∂v, 2t∂t + x∂x + v∂v, µt∂t + v∂x − u(u + 1)∂u − v∂v

7 eµ arctan u

u2+1

√
u2 + 1 eν arctan u ∂t , ∂x, ∂v, (µ − 2ν)t∂t + ((µ − ν)x − v)∂x + (u2 + 1)∂u +

(x + (µ − ν)v)∂v

8 eµ arctan u

u2+1
0 ∂t , ∂x, ∂v, 2t∂t + x∂x + v∂v, µt∂t + v∂x − (u2 + 1)∂u − x∂v

9 u−2 0 ∂t , ∂v, 2t∂t + u∂u + v∂v, −vx∂x + u(ux + v)∂u + 2t∂v,

4t2∂t − (v2 + 2t)x∂x + u(v2 + 6t + 2xuv)∂u + 4tv∂v,

x∂x − u∂u, φ∂x − φvu
2∂u

10 u−2 u−1 ∂t , ∂v, 2t∂t + u∂u + v∂v, −v∂x + u2∂u + 2t∂v,

4t2∂t − (v2 + 2t)∂x + 2u(uv + 2t)∂u + 4tv∂v,

∂x, e−xφ∂x + e−x(φ − uφv)u∂u

11 1 −u2 ∂t , ∂x, 2t∂t + x∂x − u∂u, 2t∂x − ∂u − x∂v,

4t2∂t + 4tx∂x − 2(x + 2ut)∂u − (x2 + 2t)∂v,

∂v, e−v(hx − hu)∂u + e−vh∂v

12 1 0 ∂t , ∂x, 2t∂t + x∂x − u∂u, 2t∂x − (xu + v)∂u − xv∂v,

4t2∂t + 4tx∂x − ((x2 + 6t)u + 2xv)∂u − (x2 + 2t)v∂v,

u∂u + v∂v, hx∂u + h∂v

Here µ, ν = const. (µ, ν) �= (−2, −2), (0, 1) and ν �= −1, 0 for Cases 2.5∗ and 2.4. µ �= −2, 0 for Cases 2.8∗ and 2.6.
The functions φ = φ(t, v) and h = h(t, x) are arbitrary solutions of the linear heat equation (φt = φvv; ht = hxx).

Definition 2. We will call (6) and (7) purely potential equivalence transformations for the
class of PDEs (1).

Studying potential symmetries of (1) is equivalent to solving the group classification
problem in the class of systems (4) with respect to the (incomplete) equivalence group G∼

triv. pot.
Let us note that potential symmetries of (1) were investigated in [30]. Using transformations
from G∼

triv. pot, we essentially simplify, order and complete these results.

Theorem 5. The Lie algebra of the kernel of principal groups of (4) is Aker
pot = 〈∂t , ∂x, ∂v〉(=Amax

2.0

)
. A complete set of G∼

triv. pot-inequivalent systems (4) with the maximal Lie invariance
algebra Amax not equal to Aker

pot is exhausted by cases given in table 2.

To test some results presented in table 2, we used the unique program LIE by Head [16].
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4. Analysis of classification results

Let us analyse the connections between cases from tables 1 and 2.
Cases 2.0∗–2.8∗ completely correspond to Cases 1.0–1.7a: 2.0∗ ↔ 1.0, 2.1∗ ↔ 1.1,

2.2∗ ↔ 1.2, 2.3∗ ↔ 1.3, 2.4∗ ↔ 1.4, 2.5∗ ↔ 1.5µ �=−1, 2.6∗ ↔ 1.5µ=−1, 2.7∗ ↔ 1.6,
2.8∗

µ �=−4/3 ↔ 1.7aµ �=−2. The constant multiplier in K (∼k) can be change using equivalence
transformations of the form t̃ = ε2t, x̃ = εx, ũ = u, ṽ = εv, d̃ = d, K̃ = εK

(∼k̃ = εk), which nontrivially act only on the latter basis operators in Cases 2.3∗ and
1.3. The correspondence 2.7∗ → 1.6 are established with the equivalence transformation
t̃ = t, x̃ = −x, ũ = u, ṽ = −v, d̃ = d, K̃ = −K + 1. All the above correspondences also
mean isomorphisms of Amax

2.∗
/〈∂v〉 and Amax

1 , which are realized by means of the projection to
the space of (t, x, u) (→) or the prolongation on the variable v (←). Therefore, equation (1)
has no pure potential symmetries for these values of d and k.

Cases 2.8∗
µ=−4/3 and 1.8 do not correspond to each other completely because the basis

operator x2∂x −3xu∂u from Amax
1.8 cannot be prolonged onto v in a local manner and the algebra

Amax
2.8∗

µ=−4/3

/〈∂v〉 is isomorphic to a proper subalgebra of Amax
1.8 .

There are pairs of ‘starred’ cases from table 2 which are equivalent with respect to the
hodograph transformation (7): 2.5∗

µ,ν ↔ 2.5∗
µ′,ν ′ (µ + µ′ = −2, ν + ν ′ = 1), 2.6∗

µ ↔ 2.7∗
µ′ ,

2.8∗
µ ↔ 2.8∗

µ′ (µ + µ′ = −2). (To exclude from consideration cases which are equivalent to
other with respect to G∼

pot, we have to assume additionally that, e.g., µ � −1 and ν � 1
2 if

µ = −1 for Cases 2.5∗
µ,ν and 2.8∗

µ.) Therefore, the following statement is true.

Lemma 1. Cases in the pairs (1.5µ,ν, 1.5µ′,ν ′)(µ + µ′ = −2, ν + ν ′ = 1), (1.5ν=−1, 1.6),

(1.7aµ, 1.7aµ′) (µ + µ′ = −2) are equivalent with respect to PET (7).

The algebras Amax
2.1 –Amax

2.12 contain operators which are not projectible to the space (t, x, u),
i.e., their coefficients corresponding to the variables t, x and u depend on v. Therefore,
equation (1) for these values of d and K has purely potential symmetries.

Cases 2.1–2.6 including the corresponding Lie invariance algebras are reduced to ‘starred’
cases by means of using purely PETs (7) and (6): 2.1 → 2.2∗, 2.2 → 2.3∗, 2.3 → 2.4∗

(hodograph transformation (7)); 2.4 → 2.5∗, 2.5 → 2.6∗, 2.1 → 2.2∗ (transformation (6) with
ε = 1).

Using the equivalence transformation t̃ = t, x̃ = x − t, ũ = u, ṽ = v + 2t, d = d, K̃ =
K − u − 2 from G∼

triv. pot, one can reduce the function K in Case 2.4 (ν = −2) to the
simpler form K̃ = u−1. Then the last operator has the form (µ + 4)t∂t + ((µ + 2)x − v)∂x +
u(u + 1)∂u + ((µ + 3)v + 2t)∂v . A similar statement is true for ν = −3.

Cases 2.7 and 2.8 are most specific in the sense of reducibility to cases from table 1. There
exist no transformations over the real field that reduce these cases to a simpler form. After
considering equation (1) and system (4) over the complex field we can reduce Cases 2.7/2.8
to Cases 2.5∗

µ′,ν ′/2.8∗
µ′ where µ′ = −iµ/2 − 1, ν ′ = −iν/2 − 1/2 using the partial case of

transformation (6):

t̃ = −4t, x̃ = −2x + 2iv, ṽ = 2x + 2iv,

ũ = u − i

u + i
, d̃ = (u + i)2d, K̃ = K

u + i
.

Cases 2.7µ,ν and 2.7µ′,ν ′ (2.8µ and 2.8µ′) are equivalent iff µ = −µ′ and ν = −ν ′ (µ = −µ′).
The equivalence is realized by means of the transformation of changing signs of x and u
simultaneously. To exclude from consideration cases which are equivalent to other with
respect to G∼

pot, e.g., we have to assume additionally µ � 0 and ν � 0 if µ = 0 (µ � 0).
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The u−2-diffusion, Fokas–Yortsos, Burgers and linear heat equations (Cases 1.7aµ=−2,
1.7b, 1.9 and 1.10 correspondingly) essentially are distinguished by the group classification
of equations (1) in different ways. After introducing the potential v and replacing
equations (1) with systems (4) (Cases 2.9–2.12), distinction between these cases and the others
becomes more explicit because Amax

2.9 –Amax
2.12 are isomorphic infinite-dimensional algebras and,

using PET (7) and additional equivalence transformation (3), we can transform these cases to
each other (see also [21]):

Therefore, all equations (1) having infinite-dimensional algebras of potential symmetries
are either linear or linearizable. As one can see, the well-known Cole–Hopf transformation
can be obtained as a combination of the above transformations. Only for the linear heat
equation the potential symmetry algebra factorized with 〈∂v〉 is isomorphic to the maximal
Lie invariance algebra. The isomorphism is not established with simple projection to the
space (t, x, u). It is possible because of linearity and coincidence of the initial and potential
equations.

The above analysis results in the following theorem.

Theorem 6. All the symmetries presented in table 2 can be obtained from Lie symmetries of
(1) by means of prolongation to the potential v and application of PETs (6) and (7) (over the
complex field in Cases 2.7 and 2.8) and additional equivalence transformation (3) prolonged
to v (ṽ = v).

Symmetry properties of systems (4) are connected in a more direct way with those of (5)
than with those of (1) because systems (4) are simply the first prolongation [23] of (5) with
respect to the variable x. Using this connection, we can easily solve the problem of group
classification in the class of equations (5).

Theorem 7. The equivalence group G̃∼
pot of the class of equations (5) and its Lie algebra

Ã∼
pot are projections of G∼

pot and A∼
pot to the space (t, x, v). The Lie algebra of the kernel

of principal groups of (5) is Ãker
pot = 〈∂t , ∂x, ∂v〉. A complete set of G̃∼

pot-inequivalent
equations (5) with the maximal Lie invariance algebra Amax not equal to Ãker

pot is exhausted by

Cases 2.0∗–2.4∗, 2.5∗
µ,ν (µ � −1 and ν � 1

2 if µ = −1), 2.6∗
µ, 2.8∗

µ (µ � −1), 2.7 (µ � 0
and ν � 0 if µ = 0), 2.8 (µ � 0) and 2.12.

5. PETs as nonlocal symmetry transformations

There exist equations in class (1) that are invariant with respect to nontrivial transformations
from G∼

pot. Thus, equation (1) admits transformations either (6), ε = 1 or (7) iff
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either d = u−2F 1(u−1), K = uG1(u−1) or

d = u−1F 2(ln u), K = u1/2G2(ln u),

where F 1 and G1 are periodic functions with the period equal to 1 and F 2 (G2) is an even
(odd) function. Such nonlocal symmetry transformations generate additional (with respect to
Lie symmetries) equivalences in sets of solutions.

Consider, in more detail, the fast diffusion equation

ut = (u−1ux)x. (8)

It is invariant with respect to transformation (7) which is additional to the usual Lie symmetry
group Gmax of equation (8). Action of elements of Gmax on the solutions is given by the
formula [24]

ũ(t, x) = ε−1
3 ε2

4u(ε3t + ε1, ε4x + ε2),

where ε1, . . . , ε4 are arbitrary constants, ε3ε4 �= 0.

Lemma 2. The set of Lie invariant solutions of equation (8) is closed under
transformation (7).

Proof. Transformation (7) generates an adjoint action H on the Lie symmetry algebra

Amax
pot = 〈∂t , ∂x, ∂v, D̂

1 = x∂x − 2u∂u − v∂v, D̂
2 = 2t∂t + x∂x + v∂v〉

of the corresponding potential system (Case 2.8∗
µ=−1), which is determined in the following

way: H(∂t ) = ∂t ,H(∂x) = ∂v,H(∂v) = ∂x,H(D̂1) = −D̂1,H(D̂2) = D̂2. Elements of the
Lie symmetry algebra

Amax = 〈∂t , ∂x,D
1 = x∂x − 2u∂u,D

2 = 2t∂t + x∂x〉
of equation (8) is prolonged with respect to v ambiguously up to a term proportional to ∂v .
Therefore, transformation (7) correctly generates also an adjoint action H′ on the classes of
elements from Amax, which differ each from other with terms proportional to ∂v .

In view of the above, up to translations with respect to v (or x) any invariant solution of (8)
gives an invariant solution of the potential system, which is transformed by (7) to an invariant
solution of the same system, and the latter solution can be projected to an invariant solution
of (8). �

All invariant solutions constructed in closed forms earlier with the classical Lie method
were collected, e.g., in [26]. A complete list of Gmax-inequivalent solutions of such type are
exhausted by the following ones:

(1) u = 1

1 + εex+t
; (2) u = ex; (3) u = 1

x − t + µte−x/t
; (4) u = 2t

x2 + εt2
;

(5) u = 2t

cos2 x
; (6) u = −2t

cosh2 x
; (7) u = 2t

sinh2 x
.

(9)

Here ε and µ are arbitrary constants, ε ∈ {−1, 0, 1} mod Gmax. The arrows denote the possible
transformations of solutions (9) to each other by means of (7) up to translations with respect
to x:

�(1)ε=0; (1)ε=1 ←→ (1)ε=−1,x+t<0; �(1)ε=−1,x+t>0; (2) ←→ (3)µ=0,x>t ;
�(4)ε=0; (5) ←→ (4)ε=4; (6) ←→ (4)ε=−4,|x|<2|t |; (7) ←→ (4)ε=−4,|x|>2|t |.
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The fifth connection was known earlier [14, 28]. If µ �= 0 solution (3) from list (9) is mapped
by (7) to the solution

(8) u = tϑ(ω) − t + µt e−ϑ(ω), ω = x − ln|t |,
which is invariant with respect to the algebra 〈t∂t + ∂x + u∂u〉. Here, ϑ is the function
determined implicitly by the formula

∫
(ϑ − 1 + µ e−ϑ)−1 dϑ = ω.

To find exact solutions of equation (8), other methods can also be used. Thus, Gandarias
[15] found the new exact non-Lie solutions with the nonclassical symmetry method. We
adduce the list of these solutions up to Gmax-equivalence, completing it with similar ones:

(1) u = cos t

sin x − sin t
; (2) u = cosh t

sinh x − sinh t
;

(3) u = −sinh t

cosh x + cosh t
; (4) u = sinh t

cosh x − cosh t
; (5) u = cos t

cosh x + sin t
.

(10)

Solutions (10) can be presented in the form of compositions of two simple waves which move
with the same velocities in opposite directions:

(1) u = cot(x − t) + tan(x + t); (2) u = coth(x − t) − tanh(x + t);
(3) u = tanh(x − t) − tanh(x + t); (4) u = coth(x + t) − coth(x − t).

(We simplify the above representations by a scale transformation. The fifth solution admits
such representation over the complex field only.) Solutions (4) and (5) are not adduced in [15]
in any form.

Up to translations with respect to x, transformation (7) acts on the set of solutions (10) in
the following way:

(1)sin x>sin t ←→ (5); (1)sin x<sin t ←→ (5)|x→−x;
�(2)x<t ; (2)x>t ←→ (2)x>t |x→−x; (3) ←→ (4)|x|<|t |; �(4)|x|>|t |.

The latter actions can be interpreted in terms of actions of transformation (7) on the nonclassical
symmetry operators which correspond to solutions (10).

6. Conclusion

It was proved above that any nonlinear diffusion–convection equation having nontrivial
potential symmetries can be reduced to another diffusion–convection equation with potential
equivalence transformations such that all symmetries will become point. This result generates
a number of questions, and each is an interesting problem. Are similar statements right for
more general classes of differential equations? Does a differential equation exist, potential
symmetries of which cannot be constructed from point symmetries of an equation equivalent
to the initial one via potential transformations? Could the result be generalized to other kinds
of symmetries (e.g., nonclassical, conditional and approximate ones)? We believe that solving
the above problems will allow us to understand deeper the essence of potential symmetries.

We have also investigated the other potential forms of equations (1). These results will
be published in our further paper on the subject.
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